问题 解答题

设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1。

(1)求概率P(ξ=0);

(2)求ξ的分布列,并求其数学期望E(ξ)。

答案

解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,

∴共有8对相交棱,

∴P(ξ=0)=

(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,

∴P(ξ=)=

P(ξ=1)1-P(ξ=0)-P(ξ=)=

∴随机变量ξ的分布列是:

数学期望E(ξ)=1×+×=

单项选择题
单项选择题 A1/A2型题