问题
解答题
一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分别为1,2,3,4,从袋中任意取出3个球.
(1)求取出的3个球编号都不相同的概率;
(2)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.
答案
(1)(2)
记“取出的3个球编号都不相同”为事件A,“取出的3个球中恰有两个球编号相同”为事件B,则P(B)==
=
,∴P(A)=1-P(B)=
.
(2)X的取值为1,2,3,4
P(X=1)==
,P(X=2)=
=
,
P(X=3)==
,P(X=4)=
=
.
所以X的分布列为
X | 1 | 2 | 3 | 4 |
P | ![]() | ![]() | ![]() | ![]() |
![](https://img.ixiawen.com/uploadfile/2017/0516/20170516112057362.png)
![](https://img.ixiawen.com/uploadfile/2017/0516/20170516112057263.png)
![](https://img.ixiawen.com/uploadfile/2017/0516/20170516112057634.png)
![](https://img.ixiawen.com/uploadfile/2017/0516/20170516112057168.png)
![](https://img.ixiawen.com/uploadfile/2017/0516/20170516112057734.png)
![](https://img.ixiawen.com/uploadfile/2017/0516/20170516112057451.png)