观察下列各式: (a-1)(a+1)=a2-1 (a-1)(a2+a+1)=a3+a2+a-a2-a-1=a3-1 (a-1)(a3+a2+a+1)=a4+a3+a2+a-a3-a2-a-1=a4-1 根据观察的规律,解答下列问题: (1)填空: ①(a-1)(______)=a6-1; ②(a-1)(a11+a10+…+a+1)=______; ③(a-1)(an+an-1+an-2+…+a+1)=______. (2)已知:1+22+24+26+…+22006+22008+22010=
求:2+23+25+27+…+22007+22009的值. |
(1)∵a-1)(a+1)=a2-1,
(a-1)(a2+a+1)=a3+a2+a-a2-a-1=a3-1,
(a-1)(a3+a2+a+1)=a4+a3+a2+a-a3-a2-a-1=a4-1,
∴①a5+a4+a3+a2+a+1;
②a12-1;
③an+1-1;
(2)因为(2-1)(1+2+22+23+24+…+22008+22009+22010)=22011-1,
即1+2+22+23+24+…+22008+22009+22010=22011-1.
而1+22+24+26++22006+22008+22010=
×41006-1 3
,1 3
所以2+23+25+27++22007+22009=21011-1-(
×41006-1 3
)1 3
=22011-
×41006-1 3
=2 3
×41005-2 3
.2 3
故答案为:a5+a4+a3+a2+a+1,a12-1,an+1-1.