问题 解答题
观察下列各式:
(a-1)(a+1)=a2-1
(a-1)(a2+a+1)=a3+a2+a-a2-a-1=a3-1
(a-1)(a3+a2+a+1)=a4+a3+a2+a-a3-a2-a-1=a4-1
根据观察的规律,解答下列问题:
(1)填空:
①(a-1)(______)=a6-1;
②(a-1)(a11+a10+…+a+1)=______;
③(a-1)(an+an-1+an-2+…+a+1)=______.
(2)已知:1+22+24+26+…+22006+22008+22010=
1
3
×41006-
1
3

求:2+23+25+27+…+22007+22009的值.
答案

(1)∵a-1)(a+1)=a2-1,

(a-1)(a2+a+1)=a3+a2+a-a2-a-1=a3-1,

(a-1)(a3+a2+a+1)=a4+a3+a2+a-a3-a2-a-1=a4-1,

∴①a5+a4+a3+a2+a+1;

②a12-1;

③an+1-1;

(2)因为(2-1)(1+2+22+23+24+…+22008+22009+22010)=22011-1,

即1+2+22+23+24+…+22008+22009+22010=22011-1.

1+22+24+26++22006+22008+22010=

1
3
×41006-
1
3

所以2+23+25+27++22007+22009=21011-1-(

1
3
×41006-
1
3
)

=22011-

1
3
×41006-
2
3
=
2
3
×41005-
2
3

故答案为:a5+a4+a3+a2+a+1,a12-1,an+1-1.

单项选择题
多项选择题