问题 问答题

如图所示,在长为2L、宽为L的区域内有正好一半空间有场强为E、方向平行于短边的匀强电场,有一个质量为m,电量为e的电子,以平行于长边的速度v0从区域的左上角A点射入该区域,不计电子所受重力,要使这个电子能从区域的右下角的B点射出,求:

(1)无电场区域位于区域左侧一半内时,如图甲所示,电子的初速应满足什么条件?

(2)无电场区域的左边界离区域左边的距离为x时,如图乙所示,电子的初速又应满足什么条件.

答案

(1)粒子做匀速直线运动,由运动学公式可知,

无电场中运动的时间,t=

L
v0

在电场中做类平抛运动,由牛顿第二定律,则有L=

1
2
at2=
eEL2
2m
v20

由上两式,综合解得:v0=

eEL
2m

(2)粒子做匀速直线运动,则运动时间为t1=

x
v0

在两个电场中的偏距:y1+y3=

1
2
at2=
eEL2
2m
v20

在无电场区域中的运动时间为t2,偏距y2

运动的时间,t2=

L
v0

偏转位移,y2=at1t2=

eELx
m
v20

则有L=y1+y2+y3=

eEL(
L
2
+x)
m
v20

解得:v0=

eE(L+2x)
2m

答:(1)无电场区域位于区域左侧一半内时,如图甲所示,电子的初速应满足 v0=

eEL
2m
条件;

(2)无电场区域的左边界离区域左边的距离为x时,如图乙所示,电子的初速又应满足:v0=

eE(L+2x)
2m
条件.

多项选择题
单项选择题 A1/A2型题