问题
填空题
若a2+a+1=2,则(a-5)(6+a)=______.
答案
∵a2+a+1=2,
∴a2+a=1,
∵(a-5)(6+a)=a2+a-30,
将a2+a=1代入上式得:
∴原式=1-30=-29.
故填-29.
若a2+a+1=2,则(a-5)(6+a)=______.
∵a2+a+1=2,
∴a2+a=1,
∵(a-5)(6+a)=a2+a-30,
将a2+a=1代入上式得:
∴原式=1-30=-29.
故填-29.