问题 解答题
已知(
x
-
2
x2
)n(n∈N*)
的展开式中,第5项的系数与第3项的系数比是10:1
求:(1)展开式中含x
3
2
的项
(2)展开式中二项式系数最大的项
(3)展开式中系数最大的项.
答案

Tr+1=

Crn
x
n-r
2
(-2)rx-2r(r=0,1,…n)

(1)第5项的系数为Cn4(-2)4,第3项的系数为Cn2(-2)2

C4n
•16
C2n
•4
=10,解得n=8.令
8-r
2
-2r=
3
2
,解得r=1

∴展开式中含x

3
2
的项为(1)T2=-16x
3
2
-------------(4分)

(2)由二项式系数性质得C84最大,则二项式系数最大的项为T5=

1120
x6
------(8分)

(3)先求(

x
+
2
x2
)8展开式中系数最大的项

设第r项系数最大,则

Cr8
2r
Cr-18
2r-1
Cr8
2r
Cr+18
2r+1
8!
r!(8-r)!
2r
8!
(r-1)!(8-r+1)!
2r-1
8!
r!(8-r)!
2r
8!
(r+1)!(8-r-1)!
2r+1

解得

r≤6
r≥5
,则r=5或r=6,故(
x
-
2
x2
)8
中第7项系数最大,T7=
1792
x11
-------(12分)

单项选择题
单项选择题