问题
解答题
若x+y=1,且(x+2)(y+2)=3,求x2+xy+y2的值.
答案
∵(x+2)(y+2)=3,
∴xy+2x+2y+4=3,即xy+2(x+y)=-1,
把x+y=1代入上式,得xy=-3,
∴x2+xy+y2=(x+y)2-xy=4.
若x+y=1,且(x+2)(y+2)=3,求x2+xy+y2的值.
∵(x+2)(y+2)=3,
∴xy+2x+2y+4=3,即xy+2(x+y)=-1,
把x+y=1代入上式,得xy=-3,
∴x2+xy+y2=(x+y)2-xy=4.