问题 问答题

如图所示,离子发生器发射出一束质量为m,带电量为q的离子(初速度不计,重力不计),经加速电压U1加速后以垂直于电场方向射入两平行板中央,受偏转电压U2作用后,飞出电场.已知平行板的长度为L,两板间距离为d,试计算:

(1)偏转量y是多少?

(2)离子离开电场时的速度偏角θ的正切值是多大?

答案

(1)离子在加速电场中运动的过程中,只有电场力做功W=qU,根据动能定理得:qU1=

1
2
mv02

解得:v0=

2qU1
m

离子在偏转电场中做类平抛运动,水平方向匀速直线运动

所以:L=v0t

解得:t=

L
v0
=
L
2qU1
m
=L
m
2qU1

偏转电场的场强:E=

U2
d

则离子所受的电场力:F=qE=

qU2
d

根据牛顿第二定律:qE=ma

解得:a=

qU2
md

离子在偏转电场中做类平抛运动,竖直方向初速度为零的匀加速直线运动:

所以:y=

1
2
at2=
1
2
×
qU2
md
×(L
m
2qU1
2=
L2U2
4dU1

(2)竖直方向上的速度vy=at=

qU2
md
×
L
v0

所以离子离开偏转电场时的偏转角θ的正切值tanθ=

vy
v0
=
qU2L
dm
v20

又因为qU1=

1
2
mv02

联立解得:tanθ=

LU2
2dU1

答:(1)偏转量y是

L2U2
4dU1
.(2)离子离开电场时的速度偏角θ的正切值是
LU2
2dU1

填空题
单项选择题