问题
解答题
(1)已知2m=3,32n=6,求23m-10n;
(2)若(x2+nx+3)(x2-3x+m)的乘积中不含x2和x3项,求m、n的值.
答案
(1)23m-10n=23m÷210n=(2m)3÷(25)2n=(2m)3÷322n=(2m)3÷(32n)2,
∵2m=3,32n=6,
∴原式=33÷62
=27÷36
=
;3 4
(2)(x2+nx+3)(x2-3x+m)
=x4+nx3+3x2-3x3-3nx2-9x+mx2+mnx+3m
=x4+(n-3)x3+(3-3n+m)x2+(mn-9)x+3m,
∵乘积中不含x2和x3项,
∴n-3=0,3-3n+m=0,
解得:m=6,n=3.