问题
解答题
若等差数列{an}的首项为a1=A2x-3x-1+Cx+12x-3(x>3),公差d是(
(1)求数列{an}的通项公式; (2)令bn=an+15n-75,求证:
|
答案
(1)在a1=A2x-3x-1+Cx+12x-3(x>3),中,有
⇒x=4,2x-3≥x-1 x+1≥2x-3 x∈N x>3
∴a1=A53+C55=61,
又5555=(56-1)55=56m-1,m∈Z,∴5555除以8的余数为7,∴k=7,
因(
-x
)7的展开式中,通项为2 x
(C r7
) 7-r(-x
) r,当r=1时,它是含x2的项,2 x
∴(
-x
)k的展开式中x2的系数是:-C71×2=-14,2 x
∴d=-14,
∴数列{an}的通项公式an=61+(n-1)×(-14)=75-14n,
(2)∵bn=an+15n-75=75-14n+15n-75=n,
∴(1+
)bn=(1+1 2bn
)n,数列{(1+1 2n
)n}是递增数列,1 2n
且当n=1时,(1+
)n=1 2n
,3 2
由于
(1+lim n→∞
)n=[1 2n
(1+lim n→∞
)2n] 1 2n
=1 2
,e
∴当n→+∞时,(1+
)n→1 2n
<e
,5 3
∴
≤(1+3 2
)bn<1 2bn
.5 3