问题 解答题
在二项式(
3x
-
1
2
3x
)n
的展开式中,前三项系数的绝对值成等差数列
(1)求n的值;
(2)求展开式中二项式系数最大的项;
(3)求展开式中项的系数最大的项.
答案

(1)二项式(

3x
-
1
2
3x
)n的展开式中,前三项系数的绝对值成等差数列,

C0n
+
1
4
C2n
=2•
1
2
C1n
,即 n2-9n+8=0,解得 n=8;

(2)由于第r+1项的二项式系数为

Cr8
,故当r=4时,二项式系数最大,故二项式系数最大的项为

T5=

 C48
(-
1
2
)
4
=
35
8

(3)先研究系数绝对值即可,

Cr8
(
1
2
)
r
Cr+18
(
1
2
)
r+1
Cr8
(
1
2
)
r
Cr-18
(
1
2
)
r-1
 
,解得2≤r≤3,

故系数最大的项为第三项,即T3=7x

4
3

选择题
填空题