问题
选择题
已知(1-2x)8=a0+a1x+a2x2+…a8x8,则a1+2a2+3a3+…8a8=( )
A.-8
B.8
C.-16
D.16
答案
∵(1-2x)8=a0+a1x+a2x2+…+a8x8,
∴两端求导得:
8(1-2x)7×(-2)=a1+2a2x+3a3x2+…+8a8x7,
令x=1得:a1+2a2+3a3+…8a8=8×(-1)×(-2)=16.
故选D.
已知(1-2x)8=a0+a1x+a2x2+…a8x8,则a1+2a2+3a3+…8a8=( )
A.-8
B.8
C.-16
D.16
∵(1-2x)8=a0+a1x+a2x2+…+a8x8,
∴两端求导得:
8(1-2x)7×(-2)=a1+2a2x+3a3x2+…+8a8x7,
令x=1得:a1+2a2+3a3+…8a8=8×(-1)×(-2)=16.
故选D.