问题
解答题
(1)如果x(1-x)4+x2(1+2x)k+x3(1+3x)12展开式中x4的系数是144,求正整数k的值; (2)求(
|
答案
(1)x(1-x)4,x2(1+2x)k,x3(1+3x)12的展开式中x4的系数依次为-4,Ck2•22,C121•3,
据题应有-4+4Ck2+36=144,解得k=8.
(2)(
+x-1)5=(x+1 x
)5-5(x+1 x
)4+10(x+1 x
)3-10(x+1 x
)2+5(x+1 x
)-1,1 x
分别计算各项中x项的系数,(x+
)5中通项Tr+1=1 x
x5-r•(C r5
)r=1 x
•x5-2r,C r5
r=2时得x项为T3=C52•x=10x; (x+
)3中通项为Tr+1=C3rx3-2r,r=1时得x项为 T2=C31x=3x,1 x
x+
中x项即为x;在(x+1 x
)4,(x+1 x
)2展开式中不含x项,故所求含x的项为10x+10•3x+5x=45x.1 x