问题 解答题
(1)已知(x+1)6(ax-1)2的展开式中含x3的项的系数是20,求a的值.
(2)设(5x-
x
n的展开式的各项系数之和为M,二项式系数之和为N,若M-N=240,求展开式中二项式系数最大的项.
答案

(1):(x+1)6(ax-1)2的展开式中x3系数是C63+C62×(-1)×a+C61a2=6a2-15a+20,

∵x3系数为20,∴6a2-15a+20=20,∴a=0,a=

5
2

(2)依题意得,M=4n=(2n2,N=2n,于是有(2n2-2n=240,(2n+15)(2n-16)=0,2n=16=24,解得n=4.

要使二项式系数

Cr4
最大,只有r=2,故展开式中二项式系数最大的项为 T3=
C24
 (5x)2(-
x
)
2
=150x3

选择题
多项选择题