问题 填空题

已知二项式(2+x)n的展开式中,x3的系数为160,则展开式中常数项为______.

答案

∵(2+x)n的展开式的通项为Tr+1=

Crn
2n-rxr

令r=3可得,T4=

C3n
2n-3x3

C3n
2n-3=160

n(n-1)(n-2)
6
2n-3=160

∴n(n-1)(n-2)•2n-3=26×5×3=960

结合式子两边的特点可知,n(n-1)(n-2)一定是5的倍数

当n=5时,左边60•23≠26×15=右面,舍去

当n-1=5即n=6时,左边=120•23=960=右面,符合题意

当n-2=5即n=7时,左边=210×24≠960,不符合题意

综上可得,n=6

令r=0可得,常数项为

C0n
2n=26=64,

故答案为64

问答题 简答题
多项选择题