问题
选择题
以A、B、C、D为顶点的正四面体的棱长是1,点P在棱AB上,点Q在棱CD上,则PQ之间最短距离是( )
|
答案
∵正四面体A-BCD棱长为1,
点P在AB上移动,点Q在CD上移动,
故当PQ为异面直线AB与CD的公垂线段时,PQ取最小值
由正四面体的几何特征可得此时,P为AB的中点,Q为CD的中点
在Rt△PBQ中,PB=
,BQ=1 2 3 2
则PQ=
=BQ2-PB2 2 2
故选C