问题
解答题
四棱锥P-ABCD的底面ABCD是平行四边形,
(1)求证:PA⊥底面ABCD; (2)求PC的长. |
答案
证明:(1)∵
=(-1,2,1),AB
=(0,-2,3),AD
═(8,3,2),AP
∴
•AP
=0,AB
•AP
=0,AD
∴
⊥AP
,AB
⊥AP
,AD
即AP⊥AB且AP⊥AD,
又∵AB∩AD=A
∴AP⊥平面ABCD;
(2)∵
=(-1,2,1),AB
=(0,-2,3),AD
═(8,3,2),AP
∴
=AC
+AB
=(-1,0,4),AD
=PC
-AP
=(9,3,-2),AC
∴|PC|=
.94