问题 解答题

mn∈N*f(x)=(1+2x)m+(1+x)n.

(1)当mn=2 011时,记f(x)=a0a1xa2x2+…+a2 011x2 011,求a0a1a2-…-a2 011

(2)若f(x)展开式中x的系数是20,则当mn变化时,试求x2系数的最小值.

答案

(1)-1(2)85

(1)令x=-1,得a0a1a2-…-a2 011=(1-2)2 011+(1-1)2 011=-1.

(2)因为2=2mn=20,所以n=20-2m,则x2的系数为22=4×=2m2-2m(20-2m)(19-2m)=4m2-41m+190.

所以当m=5,n=10时,f(x)展开式中x2的系数最小,最小值为85.

单项选择题
问答题 论述题