问题 解答题

(1)已知(1-2x)2008=a0+a1x+a2x2+…+a2008x2008(x∈R),求a0+a1+a2+…+a2008的值;

(2)已知(1-2x+3x2)7=a0+a1x+a2x2+…+a13x13+a14x14,求a1+a3+a5+…+a13的值.

答案

(1)1     (2)(27-67)

解:(1)令x=1,则(1-2x)2008=a0+a1x+a2x2+…+a2008x2008变为(1-2)2008=a0+a1+a2+…+a2008

∴a0+a1+a2+…+a2008=1.

(2)分别令x=1及x=-1,

可得

两式相减,用上式减下式可得

2(a1+a3+…+a13)=27-67

∴a1+a3+a5+…+a13 (27-67).

单项选择题
单项选择题 A1/A2型题