已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.
(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一个点E,可以使二面角A1-BD-E的大小为45°?如果存在,试确定点E在棱CC1上的位置;如果不存在,请说明理由.
(1)证明:连接AC,BD,设AC∩BD=O,连接A1O,OE,
在等边△A1BD中,BD⊥A1O,
∵BD⊥A1E,A1O⊂平面A1OE,A1O∩A1E=A1,
∴BD⊥平面A1OE,
于是BD⊥OE,
∴∠A1OE是二面角A1-BD-E的平面角,
在正方体ABCD-A1B1C1D1中,设棱长为2a,
∵E是棱CC1的中点,
∴由平面几何知识,得EO=
a,A1O=3
a,A1E=3a,6
满足A1E2=A1O2+EO2,
∴∠A1OE=90°,即平面A1BD⊥平面EBD.
(2)在正方体ABCD-A1B1C1D1中,
假设棱CC1上存在点E,可以使二面角A1-BD-E的大小为45°,
由(1)知,∠A1OE=45°,
设正方体ABCD-A1B1C1D1的棱长为2a,EC=x,
由平面几何知识,得EO=
,A1O=2a2+x2
a,A1E=6
,8a2+(2a-x)2
∴在△A1OE中,由A1E2=A1O2+EO2-2A1O•EO•cos∠A1OE,
得x2-8ax-2a2=0,
解得x=4a±3
a,2
∵4a+3
a>2a,4a-32
a<0,2
∴棱OC1上不存在满足条件的点.