问题
填空题
在△ABC中,∠ABC=90°,AB=BC=a,BD⊥AC于D,以BD为棱折成直二面角A-BD-C,P是AB上的一点,若二面角P-CD-B为60°,则AP=______.
答案
∵在△ABC中,∠ABC=90°,AB=BC=a,BD⊥AC于D,
∴△ABC为等腰直角三角形,
则翻折后CD⊥平面ABD
则CD⊥AD,CD⊥PD
∴∠PAB即二面角P-CD-B的平面角等60°,
∴在△PAD中,AD=
a,∠A=45°,∠APD=105°2 2
由正弦定理易得AP=
a
-13 2
故答案为:
a
-13 2