在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,点E在棱CC1上,点F是棱C1D1的中点.
(I)若点E是棱CC1的中点,求证:EF∥平面A1BD;
(II)试确定点E的位置,使得A1-BD-E为直二面角,并说明理由.
(I)证明:(1)连接CD1∵四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形
∴A1D1∥AD,AD∥BC,A1D1=AD,AD=BC;
∴A1D1∥BC,A1D1=BC,∴四边形A1BCD1为平行四边形;
∴A1B∥D1C(3分)
∵点E、F分别是棱CC1、C1D1的中点;
∴EF∥D1C
又∴EF∥A1B又∵A1B⊂平面A1DB,EF⊂面A1DB;∴EF∥平面A1BD(6分)
(II)连接AC交BD于点G,连接A1G,EG
∵四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,底面ABCD是菱形
∴AA1⊥AB,AA1⊥AD,EC⊥BC,EC⊥DC,AD=AB,BC=CD
∵底面ABCD是菱形,∴点G为BD中点,∴A1G⊥BD,EG⊥BD
∴∠A1GE为直二面角A1-BD-E的平面角,∴∠A1GE=90°(3分)
在棱形ABCD中,∠DAB=60°,AB=2,∴∠ABC=120°,
∴AC=
=2AB2+BC2-2AB•BC•cos1202 8
∴AG=GC=
(10分)8
在面ACC1A1中,△AGA1,△GCE为直角三角形
∵∠A1GE=90°∴∠EGC+∠A1GA=90°,
∴∠EGC=∠AA1G,
∴Rt△A1AG∽Rt△ECG(12分)
∴
=EC CG
⇒EC=AG AA1 3 4
所以当EC=
时,A1-BD-E为直二面角.(15分)3 4