问题
填空题
已知PA、PB、PC是从P点出发的三条射线,每两条射线的夹角均为60°,则直线PC与平面PAB所成角的余弦值是______.
答案
在PC上任取一点D并作PO⊥平面APB,则∠DPO就是直线PC与平面PAB所成的角.
过点O作OE⊥PA,OF⊥PB,因为DO⊥平面APB,则DE⊥PA,DF⊥PB.
△DEP≌△DFP,∴EP=FP,∴△OEP≌△OFP,
因为∠APC=∠BPC=60°,所以点O在∠APB的平分线上,即∠OPE=30°.
设PE=1,∵∠OPE=30°∴OP=
=1 cos30° 2 3 3
在直角△PED中,∠DPE=60°,PE=1,则PD=2.
在直角△DOP中,OP=
,PD=2.则cos∠DPO=2 3 3
=OP PD
.3 3
即直线PC与平面PAB所成角的余弦值是
.3 3