问题 解答题
已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD绕CD旋转至A′CD,使A′B=
3

(1)求证:BA′⊥面A′CD;
(2)求异面直线A′C与BD所成角的余弦值.
(3)(理科做)求二面角A′-CD-B的大小.
答案

证明:

(1)由题可知:CD⊥BD,CD⊥AD,
且BD∩AD=D,

∴CD⊥面ABD,CD⊥AB,

又∵AD2+AB2=BD2,∴AD⊥AB,且CD∩AD=D,

∴BA⊥面ACD.

(2)过点AAEBD,且AE=BD,连接DE,则∠CA′E为所求角,CE=

5
AE=2,∴COS∠CAE=
4+3-5
2×2×
3
=
3
6

(3)∵AD⊥CD,且BD⊥CD,

∴∠A′DB是所求二面角的平面角,

由题易知∠ADB=60°

∴二面角A-CD-B的大小为60°

选择题
单项选择题