问题
选择题
在正三棱柱ABC-A1B1C1中,若AB=
|
答案
取A1B1中点D,连结BD、C1D,
∵矩形AA1B1B中,tan∠B1BD=tan∠B1AB=2 2
∴∠B1BD=∠B1AB=90°-∠ABD,可得∠B1AB+∠ABD=90°
因此AB1⊥BD
∵正三棱柱ABC-A1B1C1中,平面A1B1C1⊥平面AA1B1B
平面A1B1C1∩平面AA1B1B=A1B1,DC1⊥A1B1
∴直线DC1⊥平面AA1B1B,可得DC1⊥AB1
∵DC1∩BD=D,∴AB1⊥平面BC1D
因此,可得AB1⊥C1B,即AB1与C1B所成角的大小为90°
故选:B