问题
选择题
设l,m,n为三条不同的直线,α、β为两个不同的平面,下列命题中正确的个数是
①若l⊥α,m∥β,α⊥β则l⊥m ②若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α
③若l∥m,m∥n,l⊥α,则n⊥α ④若l∥m,m⊥α,n⊥β,α∥β,则l∥n( )
A.1
B.2
C.3
D.4
答案
①若l⊥α,m∥β,α⊥β则l⊥m,不正确,由l⊥α,α⊥β可得出l∥β或l⊂β,若m∥β,则l与m的位置关系无法确定;
②若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α,不正确,题设条件中缺少了一项m∩n=0这样一个条件,不满足线面垂直的判定定理;
③若l∥m,m∥n,l⊥α,则n⊥α,正确,由l⊥α可知在α内存在两条相交直线与l垂直,又l∥m,m∥n故可得此两直线也与n垂直,再由线面垂直的判定定理即可得出n⊥α
④若l∥m,m⊥α,n⊥β,α∥β,则l∥n,正确,由l∥m,m⊥α,可得l⊥α,再由α∥β可得l⊥β,又n⊥β故可得l∥n.
故选B.