问题
填空题
给出下列关于互不相同的直线m,n,l和平面的四个命题:
①m⊂α,l∩α=A,A∉m,则l与m不共面;
②l、m是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
③若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β;
④若l∥α,m∥β,α∥β,则l∥m
其中假命题是______.
答案
由题意
①m⊂α,l∩α=A,A∉m,则l与m不共面,此条件是异面直线的定义的符号表示,故正确;
②l、m是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α,此条件下可以在α找到两条相交线,使得它们都与n垂直,故可得n⊥α,此命题正确;
③若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β,此命题是面面平行的判定定理的符号表示式,故正确;
④若l∥α,m∥β,α∥β,则l∥m,在此条件下,l与m两条直线平行、相交、异面都有可能,故此命题是假命题.
故答案为④