问题
选择题
[2013·浙江高考]已知e为自然对数的底数,设函数f(x)=(ex-1)(x-1)k(k=1,2),则( )
A.当k=1时,f(x)在x=1处取到极小值
B.当k=1时,f(x)在x=1处取到极大值
C.当k=2时,f(x)在x=1处取到极小值
D.当k=2时,f(x)在x=1处取到极大值
答案
答案:C
当k=1时,f(x)=(ex-1)(x-1),
f′(x)=xex-1,
∵f′(1)=e-1≠0,
∴f(x)在x=1处不能取到极值;
当k=2时,f(x)=(ex-1)(x-1)2,f′(x)=(x-1)(xex+ex-2),
令H(x)=xex+ex-2,
则H′(x)=xex+2ex>0,x∈(0,+∞).
说明H(x)在(0,+∞)上为增函数,
且H(1)=2e-2>0,H(0)=-1<0,
因此当x0<x<1(x0为H(x)的零点)时,f′(x)<0,f(x)在(x0,1)上为减函数.
当x>1时,f′(x)>0,f(x)在(1,+∞)上是增函数.
∴x=1是f(x)的极小值点,故选C.