问题 选择题

(5分)(2011•福建)若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于(        )

A.2

B.3

C.6

D.9

答案

答案:D

题目分析:求出导函数,利用函数在极值点处的导数值为0得到a,b满足的条件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等.

解:∵f′(x)=12x2﹣2ax﹣2b

又因为在x=1处有极值

∴a+b=6

∵a>0,b>0

当且仅当a=b=3时取等号

所以ab的最大值等于9

故选D

点评:本题考查函数在极值点处的导数值为0、考查利用基本不等式求最值需注意:一正、二定、三相等.

单项选择题
填空题