问题 解答题

设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))处的切线垂直于y轴,

(Ⅰ)用a分别表示b和c;

(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间。

答案

解:(Ⅰ)因为

所以f′(x)=2ax+b,

又因为曲线y=f(x)通过点(0,2a+3),

故f(0)=2a+3,

而f(0)=c,

从而c=2a+3,

又曲线y=f(x)在(-1,f(-1))处的切线垂直于y轴,

故f′(-1)=0,即-2a+b=0,

因此b=2a;

(Ⅱ)由(Ⅰ)得

故当时,bc取得最小值

此时有

从而

所以

令g′(x)=0,解得

当x∈(-∞,-2)时,g′(x)<0,故g(x)在x∈(-∞,-2)上为减函数;

当x∈(-2,2)时,g′(x)>0,故g(x)在x∈(-2,2)上为增函数;

当x∈(2,+∞)时,g′(x)<0,故g(x)在x∈(2,+∞)上为减函数;

由此可见,函数g(x)的单调递减区间为(-∞,-2)和(2,+∞);单调递增区间为(-2,2)。

判断题
单项选择题