问题
解答题
设函数f(x)=ex﹣e﹣x
(Ⅰ)证明:f(x)的导数f'(x)≥2;
(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.
答案
解:(Ⅰ)f(x)的导数f'(x)=ex+e﹣x.
由于,
故f'(x)≥2.(当且仅当x=0时,等号成立).
(Ⅱ)令g(x)=f(x)﹣ax,则g'(x)=f'(x)﹣a=ex+e﹣x﹣a,
(i)若a≤2,当x>0时,g'(x)=ex+e﹣x﹣a>2﹣a≥0,
故g(x)在(0,+∞)上为增函数,
所以,x≥0时,g(x)≥g(0),即f(x)≥ax.
(ii)若a>2,方程g'(x)=0的正根为,
此时,若x∈(0,x1),则g'(x)<0,
故g(x)在该区间为减函数.
所以,x∈(0,x1)时,g(x)<g(0)=0,即f(x)<ax,与题设f(x)≥ax相矛盾.
综上, 满足条件的a的取值范围是(﹣∞,2].