问题
解答题
求自然数n,使Sn=9+17+25+…+(8n+1)=4n2+5n为完全平方数.
答案
4n2+5n=n2(4+
)=p2.5 n
若为完全平方数,则(4+
)必定也是完全平方数,5 n
因为n是自然数,所以此时n若大于5,则不能使原式为整数,也谈不上完全平方数,
所以0<n≤5 很容易看出n只能等于1才能使之成为完全平方数,
∴n=1时,使Sn=9+17+25+…+(8n+1)=4n2+5n为完全平方数.