问题
解答题
已知函数f(x)=
(1)求实数a的取值范围. (2)是否存在实数a,使得f′(x)=x的两个根x1,x2满足0<x1<x2<1,若存在,求实数a的取值范围;若不存在,请说明理由. |
答案
(1)f'(x)=x2+ax+b(1分)
因为f(x)有极值,∴△=a2-4b>0(2分)
又在x=-1处的切线与直线x-y+1=0平行,∴f'(-1)=1-a+b=1①②③④
∴b=a代入(*)式得,a2-4b>0,∴a>4或a<0(6分)
(2)假若存在实数a,使f'(x)=x的两个根x1、x2满足0<x1<x2<1,
即x2+(a-1)x+a=0的两个根x1、x2满足0<x1<x2<1,
令g(x)=x2+(a-1)x+a,则有:
解之得△=(a-1)2-4b>0① 0<
<1②1-a 2 g(0)=a>0③ g(1)=2a>0④
0<a<3∴存在实数a,且0<a<3使是f'(x)=x的两个根满足0<x1<x2<1.