问题 选择题
若方程(x-1)(x2-2x+m)=0的三根是一个三角形三边的长,则实数m的取值范围是(  )
A.0≤m≤1B.m≥
3
4
C.
3
4
<m≤1
D.
3
4
≤m≤1
答案

方程(x-1)(x2-2x+m)=0的有三根,

∴x1=1,x2-2x+m=0有根,方程x2-2x+m=0的△=4-4m≥0,得m≤1.

又∵原方程有三根,且为三角形的三边和长.

∴有x2+x3>x1=1,|x2-x3|<x1=1,而x2+x3=2>1已成立;

当|x2-x3|<1时,两边平方得:(x2+x32-4x2x3<1.

即:4-4m<1.解得,m>

3
4

3
4
<m≤1.故选C.

连线题
完形填空