问题 解答题

设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球放入5个盒子内

(1)只有一个盒子空着,共有多少种投放方法?

(2)没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?

(3)每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?

答案

首先选定两个不同的球,看作一个球,选法有C52=10种,

再把“空”当作一个球,共计5个“球”,投入5个盒子中,有A55=120种投放法.

∴共计10×120=1200种方法

(2)没有一个盒子空着,相当于5个元素排列在5个位置上,有A55种,而球的编号与盒子编号全相同只有1种,所以没有一个盒子空着,但球的编号与盒子编号不全相同的投法有   A55-1=119种.        

(3)不满足条件的情形:第一类,恰有一球相同的放法:C51×9=45,

第二类,五个球的编号与盒子编号全不同的放法:5!(

1
2!
-
1
3!
+
1
4!
-
1
5!
)=44

∴满足条件的放法数为:

A55-45-44=31(种).

多项选择题
单项选择题