设函数f(x)=x(ex-1)-ax2,a∈R,其中e为自然对数的底数. (Ⅰ)若a=
(Ⅱ)若当x≥0时,f(x)≥0恒成立,求实数a的取值范围. |
(1)a=
时,f(x)=x(ex-1)-1 2
x2,1 2
f′(x)=ex-1+xex-x=(ex-1)((x+1).
令f'(x)>0,得x<-1或x>0,
所以f(x)的单调递增区间为(-∞,-1),(0,+∞).
(2)f(x)=x(ex-1-ax)
令g(x)=ex-1-ax,则g′(x)=ex-a.
若a≤1,则当(0,+∞)时,g′(x)>0,g(x)为增函数,
而g(x)=0,从而当x≥0时,g(x)≥0,即f(x)≥0.
若a>1,则当x∈(0,lna)时,g′(x)<0,g(x)为减函数,
而g(x)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.
所以不合题意,舍去.
综合得a的取值范围为(-∞,1].