问题
选择题
直线a∥b,l与a是异面直线,则l与b的位置关系是( )
A.相交
B.异面
C.平行
D.相交或异面
答案
∵a,b是两条异面直线,直线l∥a
∴过b任一点可作与a平行的直线l,此时l与b相交.
另外l与b不可能平行,理由如下:
若l∥b则由l∥a可得到a∥b这与a,b是两条异面直线矛盾,故l与b不可能平行,
故当l与b不可能平行时,l与b必定异面.
故选D.
直线a∥b,l与a是异面直线,则l与b的位置关系是( )
A.相交
B.异面
C.平行
D.相交或异面
∵a,b是两条异面直线,直线l∥a
∴过b任一点可作与a平行的直线l,此时l与b相交.
另外l与b不可能平行,理由如下:
若l∥b则由l∥a可得到a∥b这与a,b是两条异面直线矛盾,故l与b不可能平行,
故当l与b不可能平行时,l与b必定异面.
故选D.