已知函数f(x)=-x2+8x,g(x)=6lnx+m.
(I)求f(x)在区间[t,t+1]上的最大值h(t);
(II)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;若不存在,说明理由.
(I)f(x)=-x2+8x=-(x-4)2+16.
当t+1<4,即t<3时,f(x)在[t,t+1]上单调递增,
h(t)=f(t+1)=-(t+1)2+8(t+1)=-t2+6t+7;
当t≤4≤t+1,即3≤t≤4时,h(t)=f(4)=16;
当t>4时,f(x)在[t,t+1]上单调递减,
h(t)=f(t)=-t2+8t.
综上,h(t)=-t2+6t+7,t<3 16,3≤t≤4 -t2+8t,t>4
(II)函数y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点,
即函数m(x)=g(x)-f(x)的图象与x轴的正半轴有且只有三个不同的交点.
∵m(x)=x2-8x+6lnx+m,
∴ϕ′(x)=2x-8+
=6 x
=2x2-8x+6 x
(x>0),2(x-1)(x-3) x
当x∈(0,1)时,m'(x)>0,m(x)是增函数;
当x∈(1,3)时,m'(x)<0,m(x)是减函数;
当x∈(3,+∞)时,m'(x)>0,m(x)是增函数;
当x=1,或x=3时,m'(x)=0.
∴m(x)最大值=m(1)=m-7,m(x)最小值=m(3)=m+6ln3-15.
∵当x充分接近0时,m(x)<0,当x充分大时,m(x)>0.
∴要使m(x)的图象与x轴正半轴有三个不同的交点,必须且只须ϕ(x)最大值=m-7>0 ϕ(x)最小值=m+6ln3-15<0
即7<m<15-6ln3.
∴存在实数m,使得函数y=f(x)与y=g(x)的图象有且只有三个不同的交点,m的取值范围为(7,15-6ln3).