问题 解答题
已知函数f(x)=x3-x2+
x
2
+
1
4
,且存在x0∈(0,
1
2
),使f(x0)=x0
(1)证明:f(x)是R上的单调增函数;
(2)设x1=0,xn+1=f(xn);y1=
1
2
,yn+1=f(yn),其中n=1,2,…,证明:xn<xn+1<x0<yn+1<yn
(3)证明:
yn+1-xn+1
yn-xn
1
2
答案

(1)∵f'(x)=3x2-2x+

1
2
=3(x-
1
3
2+
1
6
>0,

∴f(x)是R上的单调增函数.

(2)∵0<x0

1
2
,即x1<x0<y1.又f(x)是增函数,

∴f(x1)<f(x0)<f(y1).即x2<x0<y2

又x2=f(x1)=f(0)=

1
4
>0=x1,y2=f(y1)=f(
1
2
)=
3
8
1
2
=y1

综上,x1<x2<x0<y2<y1

用数学归纳法证明如下:

①当n=1时,上面已证明成立.

②假设当n=k(k≥1)时有xk<xk+1<x0<yk+1<yk

当n=k+1时,

由f(x)是单调增函数,有f(xk)<f(xk+1)<f(x0)<f(yk+1)<f(yk),

∴xk+1<xk+2<x0<yk+2<yk+1

由①②知对一切n=1,2,都有xn<xn+1<x0<yn+1<yn

(3)

yn+1-xn+1
yn-xn
=
f(yn)-f(xn)
yn-xn
=yn2+xnyn+xn2-(yn+xn)+
1
2
≤(yn+xn2-(yn+xn)+
1
2

=[(yn+xn)-

1
2
]2+
1
4

由(Ⅱ)知0<yn+xn<1.

∴-

1
2
<yn+xn-
1
2
1
2

yn+1-xn+1
yn-xn
<(
1
2
2+
1
4
=
1
2

完形填空
单项选择题