已知函数f(x)=x3-x2+
(1)证明:f(x)是R上的单调增函数; (2)设x1=0,xn+1=f(xn);y1=
(3)证明:
|
(1)∵f'(x)=3x2-2x+
=3(x-1 2
)2+1 3
>0,1 6
∴f(x)是R上的单调增函数.
(2)∵0<x0<
,即x1<x0<y1.又f(x)是增函数,1 2
∴f(x1)<f(x0)<f(y1).即x2<x0<y2.
又x2=f(x1)=f(0)=
>0=x1,y2=f(y1)=f(1 4
)=1 2
<3 8
=y1,1 2
综上,x1<x2<x0<y2<y1.
用数学归纳法证明如下:
①当n=1时,上面已证明成立.
②假设当n=k(k≥1)时有xk<xk+1<x0<yk+1<yk.
当n=k+1时,
由f(x)是单调增函数,有f(xk)<f(xk+1)<f(x0)<f(yk+1)<f(yk),
∴xk+1<xk+2<x0<yk+2<yk+1
由①②知对一切n=1,2,都有xn<xn+1<x0<yn+1<yn.
(3)
=yn+1-xn+1 yn-xn
=yn2+xnyn+xn2-(yn+xn)+f(yn)-f(xn) yn-xn
≤(yn+xn)2-(yn+xn)+1 2 1 2
=[(yn+xn)-
]2+1 2
.1 4
由(Ⅱ)知0<yn+xn<1.
∴-
<yn+xn-1 2
<1 2
,1 2
∴
<(yn+1-xn+1 yn-xn
)2+1 2
=1 4 1 2