已知三次函数f(x)=4x3+ax2+bx+c(a,b,c∈R)
(1)如果f(x)是奇函数,过点(2,10)作y=f(x)图象的切线l,若这样的切线有三条,求实数b的取值范围;
(2)当-1≤x≤1时有-1≤f(x)≤1,求a,b,c的所有可能的取值.
解 (1)∵f(x)是奇函数,∴由f(-x)=-f(x)得a=c=0,
∴f(x)=4x3+bx,f′(x)=12x2+b.
设切点为P(t,4t3+bt),则切线l的方程为y-(4t3+bt)=(12t2+b)(x-t),
由于切线l过点(2,10),∴10-(4t3+bt)=(12t2+b)(2-t),整理得b=4t3-12t2+5,
令g(t)=4t3-12t2+5-b,则g′(t)=12t2-24t=12t(t-2),
∴g(t)在(-∞,0)上是增函数,在(0,2)上是减函数,在(2,+∞)上是增函数,
要使切线l有三条,当且仅当g(t)=0有三个实数根,
g(t)=0有三个实数根,当且仅当g(0)>0,且g(2)<0,解得-11<b<5.
(2)由题意,当x=±1,±
时,均有-1≤f(x)≤1,故1 2
-1≤4+a+b+c≤1,①
-1≤-4+a-b+c≤1,
即-1≤4-a+b-c≤1,②
-1≤
+1 2
+a 4
+c≤1,③b 2
-1≤-
+1 2
-a 4
+c≤1,b 2
即-1≤
-1 2
+a 4
-c≤1,④b 2
①+②得-2≤8+2b≤2,从而b≤-3;
③+④得-2≤1+2b≤2,从而b≥-3,故b=-3.
代入①②③④得a+c=0,
+c=0,从而a=c=0.a 4
下面证明:f(x)=4x3-3x满足条件.
事实上,f′(x)=12x2-3=3(2x+1)(2x-1),所以f(x)在(-1,-
)上单调递增,在(-1 2
,1 2
)上单调递减,在(1 2
,1)上单调递增,1 2
而f(-1)=-1,f(-
)=1,f(1 2
)=-1,f(1)=1,所以当-1≤x≤1时 f(x)满足-1≤f(x)≤1.1 2