已知函数f(x)=aln(1+ex)-(a+1)x,(其中a>0),点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))从左到右依次是函数y=f(x)图象上三点,且2x2=x1+x3.
(Ⅰ)证明:函数f(x)在(-∞,+∞)上是减函数;
(Ⅱ)求证:△ABC是钝角三角形;
(Ⅲ)试问△ABC能否是等腰三角形?若能,求△ABC面积的最大值;若不能,请说明理由.
(Ⅰ)∵f(x)=aln(1+ex)-(a+1)x,∴f′(x)=
-(a+1)=aex 1+ex
<0恒成立,-(a+1)-ex 1+ex
所以函数f(x)在(-∞,+∞)上是单调减函数.(3分)
(Ⅱ)证明:据题意A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))且x1<x2<x3,
由(Ⅰ)知f(x1)>f(x2)>f(x3),x2=
(4分)x1+x3 2
可得A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))三点不共线
(反证法:否则2ex2=ex1+ex3≥2
=2ex2,得x1=x3)ex1+x3
∴
=(x1-x2,f(x1)-f(x2)),BA
=(x3-x2,f(x3)-f(x2)BC
∴
•BA
=(x1-x2)(x3-x2)+[f(x1)-f(x2)][f(x3)-f(x2)](6分)BC
∵x1-x2<0,x3-x2>0,f(x1)-f(x2)>0,f(x3)-f(x2)<0,∴
•BA
<0,∴∠B∈(BC
,π)π 2
即△ABC是钝角三角形(8分)
(Ⅲ)假设△ABC为等腰三角形,则只能是|
|=|BA
|BC
即:(x1-x2)2+[f(x1)-f(x2)]2=(x3-x2)2+[f(x3)-f(x2)]2∵x2-x1=x3-x2∴[f(x1)-f(x2)]2=[f(x3)-f(x2)]2
即2f(x2)=f(x1)+f(x3)⇔2aln(1+ex2)-2(a+1)x2=a[ln(1+ex1)(1+ex3)-(a+1)(x1+x3)⇔2aln(1+ex2)-2(a+1)x2=a[ln(1+ex1)(1+ex3)-2(a+1)x2⇔2ln(1+ex2)=ln(1+ex1)(1+ex3)⇔(1+ex2)2=(1+ex1)(1+ex3)⇔e2x2+2ex2=ex1+x3+ex1+ex3⇔2ex2=ex1+ex3①(11分)
而事实上,ex1+ex3≥2
=2ex2②ex1+x3
由于ex1<ex3,故(2)式等号不成立.这与(1)式矛盾.
所以△ABC不可能为等腰三角形.(13分)