已知m∈R,函数f(x)=mx2-2ex.
(Ⅰ)当m=2时,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两极值点a,b(a<b),(ⅰ)求m的取值范围;(ⅱ)求证:-e<f(a)<-2.
(Ⅰ)m=2时,f(x)=2x2-2ex,f'(x)=4x-2ex=2(2x-ex).
令g(x)=2x-ex,g'(x)=2-ex,
当x∈(-∞,ln2)时,g'(x)>0,x∈(ln2,+∞)时,g'(x)<0,
∴g(x)≤g(ln2)=2ln2-2<0,
∴f'(x)<0,
∴f(x)的单调减区间是(-∞,+∞).
(Ⅱ)(i)若f(x)有两个极值点a,b(a<b),
则a,b是方程f'(x)=2mx-2ex=0的两不等实根.
∵x=0显然不是方程的根,∴m=
有两不等实根.ex x
令h(x)=
,则h′(x)=ex x
,ex(x-1) x2
当x∈(-∞,0)时,h'(x)<0,h(x)单调递减,当x∈(0,1)时,h'(x)<0,h(x)单调递减,x∈(1,+∞)时,h'(x)>0,h(x)单调递增,
要使m=
有两不等实根,应满足m>h(1)=e,ex x
∴m的取值范围是(e,+∞).
(ii)∵f(a)=ma2-2ea,且f'(a)=2ma-2ea=0,
∴f(a)=
•a2-2ea=a•ea-2ea=ea(a-2),ea a
令g(x)=f′(x)=2mx-2ex,g′(x)=2(m-ex),
∵g(0)=-2<0,g(x)在区间(0,lnm)上单调递增,g(x)在(lnm,+∞)上递减,g(1)=2(m-e)>0,∴a∈(0,1),
设φ(x)=ex(x-2)(0<x<1),则φ'(x)=ex(x-1)<0,φ(x)在(0,1)上单调递减,
∴φ(1)<φ(a)<φ(0),即-e<f(a)<-2.