问题
解答题
函数f(x)=4x3+ax2+bx+5的图象在x=1处的切线方程为y=-12x,
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间.
答案
(1)f′(x)=12x2+2ax+b,f′(1)=12+2a+b=-12.①
又x=1,y=-12在f(x)的图象上,
∴4+a+b+5=-12.②
由①②得a=-3,b=-18,
∴f(x)=4x3-3x2-18x+5.
(2)f′(x)=12x2-6x-18=令f'(x)<0,得:12x2-6x-18<0,
可得-1<x<
,3 2
∴函数f(x)的单调减区间为(-1,
).3 2