问题 选择题
(理)函数y=
2x
1+x2
(  )
A.(-∞,+∞)上是单调递增函数
B.(-∞,+∞)上是单调减函数
C.[-1,1]上是单调增函数,(-∞,-1)和(1,+∞)上分别是单调减函数
D.[-1,1]上是单调减函数,(-∞,-1)和(1,+∞)上分别是单调增函数
答案

由题意,y′=

2(1+x2)-2x×2x
(1+x2)2
=
2(1+x)(1-x)
(1+x2)2

由y′>0,可得x∈(-1,1);由y′<0,可得x<-1,或x>1;

∴[-1,1]上是单调增函数,(-∞,-1)和(1,+∞)上分别是单调减函数

故选C.

选择题
单项选择题