问题
解答题
已知函数y=x3-2x2+x+3,x∈[
(1)单调区间; (2)值域. |
答案
(1)y′=3x2-4x+1 ( 2分)
由y′=0,得x1=
,x2=1.(4分)1 3
所以,对任意x∈[
,1],都有y′<0,2 3
因而,所求单调递减区间为[
,1].(6分)2 3
(2)由(1)知,y最大=f(
)=32 3
,(8分)2 27
y最小=f(1)=3.
所求函数值域为[3,3
].(10分)2 27