问题 填空题

函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为______.

答案

设F(x)=f(x)-(2x+4),

则F(-1)=f(-1)-(-2+4)=2-2=0,

又对任意x∈R,f′(x)>2,所以F′(x)=f′(x)-2>0,

即F(x)在R上单调递增,

则F(x)>0的解集为(-1,+∞),

即f(x)>2x+4的解集为(-1,+∞).

故答案为:(-1,+∞)

选择题
多项选择题