问题
填空题
设f(x)、g(x)是R上的可导函数,f′(x),g′(x)分别为f(x)、g(x)的导函数,且满足f′(x)g(x)+f(x)g′(x)<0,则当a<x<b时,f(x)g(x)与f(b)g(b)的大小关系为______.
答案
解析:令y=f(x)•g(x),则y′=f′(x)•g(x)+f(x)•g′(x),由于f′(x)g(x)+f(x)g′(x)<0,所以y在R上单调递减,又x<b,故f(x)g(x)>f(b)g(b).
故答案:f(x)g(x)>f(b)g(b)