问题
解答题
已知a+b+c=3,(a-1)3+(b-1)3+(c-1)3=0,且a=2,求代数式a2+b2+c2的值.
答案
把a=2代入到前两个式子中,可得b+c=1,(b-1)3+(c-1)3=-1 (1)
运用立方和公式将(1)式进行变形,得bc=0,
∴a2+b2+c2=22+(b+c)2-2bc=5
已知a+b+c=3,(a-1)3+(b-1)3+(c-1)3=0,且a=2,求代数式a2+b2+c2的值.
把a=2代入到前两个式子中,可得b+c=1,(b-1)3+(c-1)3=-1 (1)
运用立方和公式将(1)式进行变形,得bc=0,
∴a2+b2+c2=22+(b+c)2-2bc=5