问题 解答题
已知函数f(x)=lnx-
1
2
ax2(a∈R,a≠0)

(I)求函数f(x)的单调区间;
(II)已知点A(1,-
1
2
a),设B(x1y1)(x1>1)是曲线C:y=f(x)
图角上的点,曲线C上是否存在点M(x0,y0)满足:①x0=
1+x1
2
;②曲线C在点M处的切线平行于直线AB?请说明理由.
答案

(I)f(x)的定义域是(0,+∞),

f′(x)=

1
x
-ax=
1-ax2
x

①当a<0时,f′(x)>0,f(x)在(0,+∞)上单调递减,

当a>0时,由f′(x)>0和x>0得0<x<

a
a

f(x)在(0,

a
a
)内单调递增,

由f′(x)<0和x>0得x>

a
a
,f(x)在(
a
a
,+∞)内单调递减,

综上所述:当a>0时,f(x)的单调增区间是(0,

a
a
),单调递减区间是(
a
a
,+∞);

(II)假设存在满足条件的点M,

∵A在曲线C上,∴KAB=

y1+
1
2
a
x1-1
=
lnx1-
1
2
ax21
+
1
2
a
x1-1

f′(x)=

1
x
-ax,

∴f′(x0)=f′(

x1+1
2
)=
2
x1+1
-a•
x1+1
2
,由已知KAB=f′(x0),

lnx1-
1
2
ax21
+
1
2
a
x1-a
=
2
x1+1
-a•
x1+1
2

化简整理可得lnx1=

2(x1-1)
x1+1
=2-
4
x1+1

即lnx1+

4
x1+1
>2

∴lnx1+

4
x1+1
>2

∴lnx1=2-

4
x1+1
不成立,即满足条件的点M是不存在的;

补全对话,情景问答
问答题