问题
解答题
设f(x)=(xlnx+ax+a2-a-1)ex,a≥-2. (1)若a=0,求f(x)的单调区间; (2)讨论f(x)在区间(
|
答案
(1)当a=0时,f(x)=(xlnx-1)ex,(x>0)
故f′(x)=(lnx+1+xlnx-1)ex=(x+1)exlnx.
当x=1时,f′(x)=0,当x>1时,f′(x)>0,当x<1时,f′(x)<0.
故f(x)的减区间为(0,1),增区间为(1,+∞).
(2)由f(x)=(xlnx+ax+a2-a-1)ex,
得:f′(x)=(lnx+xlnx+ax+a2)ex,
令g(x)=lnx+xlnx+ax+a2,则g′(x)=
+lnx+1+a,g′′(x)=-1 x
+1 x2
,1 x
显然g′′(1)=0,又当0<x<1时,g′′(x)<0,当x>1时g′′(x)>0.
所以,g′(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
故g′(x)min=g′(1)=2+a,∵a≥-2,∴g′(x)≥g′(x)min=2+a≥0.
故g(x)在(0,+∞)上为增函数,则在区间(
,+∞)上单调递增,1 e
注意到:当x→+∞时,g(x)→+∞,故g(x)在(
,+∞)上的零点个数由1 e
g(
)=(a-1)(a+1+1 e
)的符号决定.1 e
①当g(
)≥0,即-2≤a≤-1-1 e
或a≥1时,g(x)在区间(1 e
,+∞)上无零点,1 e
即f(x)无极值点.
②当g(
)<0,即-1-1 e
<a<1时,g(x)在区间(1 e
,+∞)上有唯一零点,1 e
即f(x)有唯一极值点.
综上:当-2≤a≤-1-
或a≥1时,f(x)在(1 e
,+∞)上无极值点.1 e
当-1-
<a<1时,f(x)在(1 e
,+∞)上有唯一极值点.1 e